2
Vì sao đạo hàm của bất cứ hằng số nào cũng đều bằng 0?
0
Thu Lan0 đã đăng:

Cho mình hỏi tại vì sao đạo hàm của bất kỳ một hằng số nào cũng bằng 0?

Ví dụ:

$$y = 5 \longrightarrow y' = 0$$ $$y = \pi \longrightarrow y' = 0$$

thêm bình luận...
1
Phước10 đã đăng:

Về mặt lý thuyết, đạo hàm của một hàm số $y$ với một biến $x$ nào đó trong $y$ là xét sự thay đổi của $x$ sẽ ảnh hưởng đến sự thay đổi của $y$ như thế nào. Với từ khóa different là sự thay đổi,

$$\frac{dy}{dx} $$

(Hiểu là sự thay đổi của $y$ phụ thuộc vào sự thay đổi của $x$)

Do đó, giả sử ta có hàm số $y = x$, áp dụng công thức ta có đạo hàm của hàm số này $y' = 1$. Điều này có nghĩa là gì?

  • $x$ tăng lên 1 đơn vị thì $y$ cũng tăng lên 1 đơn vị.
  • $x$ giảm đi 1 đơn vị thì $y$ cũng giảm đi 1 đơn vị.

Ví dụ thứ hai, giả sử ta có hàm số $y = 2x$, áp dụng công thức ta có đạo hàm của hàm số này $y' = 2$. Điều này có nghĩa là gì?

  • $x$ tăng lên 1 đơn vị thì $y$ tăng lên gấp 2 lần $x$.
  • $x$ giảm đi 1 đơn vị thì $y$ giảm gấp 2 lần $x$.

Qua hai ví dụ trên, bạn có thể dễ dàng nhận thấy $y$ sẽ thay đổi nếu $x$ thay đổi.

Vậy còn trường hợp $y = c$ (với $c$ là một hằng số), giá trị của $y$ sẽ không thay đổi và luôn luôn bằng giá trị của hằng số $c$.

Mà lúc đầu chúng ta đã nói rằng bản chất của đạo hàm là xét mối quan hệ thay đổi giữa hai đại lượng. Đằng này, $y$ luôn luôn bằng $c$, tức là không có thay đổi, mà không có thay đổi thì làm gì có mối quan hệ nào. Do đó, với bất cứ hằng số nào thì đạo hàm của nó luôn luôn bằng 0.

đã bổ sung 21 tháng trước bởi
Avatar: Phước Phước10
thêm bình luận...
1
Mr. Miệt Zườn280 đã đăng:

Bạn @Phước đã trình bày ý nghĩa tại sao đạo hàm của hằng số bằng 0, còn bạn nào muốn chứng minh thì có thể áp dụng công thức định nghĩa đạo hàm để chứng minh,

$$f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$

Gọi chung mọi hằng số theo ví dụ của bạn là $c$, ta có $y = c$, thế vào công thức định nghĩa đạo hàm,

$$y' = f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \hspace{1cm} (1)$$

Đối với hàm hằng thì với mọi giá trị của $x$, giá trị của hàm số $f$ vẫn không thay đổi và luôn luôn bằng hằng số $c$, cho nên:

  • $f(x + h) = c$
  • $f(x) = c$

Do đó, $(1)$ tương đương:

$$y' = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} \frac{0}{h} = 0$$

Nếu muốn chặt chẽ hơn thì bạn có thể sử dụng khái niệm giới hạn trái $(h \to 0^-)$ và giới hạn phải $(h \to 0^+$) tại $0$ để chứng minh.

đã bổ sung 14 tháng trước bởi
thêm bình luận...

Câu trả lời của bạn

Chào mừng bạn đến với cộng đồng chia sẻ tri thức BanhoiTuidap.com, bạn có thể chia sẻ bất kỳ sự hiểu biết, nghiên cứu hoặc kinh nghiệm của mình về câu hỏi này với một số lưu ý:
  • Lịch sự, tế nhị.
  • Hạn chế ghi tắt, câu trả lời của bạn chỉ nên tập trung vào câu hỏi ở trên.
Câu trả lời của bạn sẽ được đăng ở chế độ cộng đồng, cho nên bạn sẽ không thể chỉnh sửa sau khi đăng, có thể đăng ký thành viên trên BanhoiTuidap.com khi bạn muốn theo dõi câu hỏi này hoặc chủ đề liên quan.
Bạn đang thắc mắc? Ghi câu hỏi của bạn và đăng ở chế độ cộng đồng (?)
Bạn đang thắc mắc? Hỏi cộng đồng (?)