2
Chứng minh đường tròn ngoại tiếp tam giác?
0
Mỹ Lệ0 đã đăng:

Chứng minh rằng với mọi tam giác ABC bất kỳ, luôn tồn tại một đường tròn ngoại tiếp có tâm O là giao điểm của ba đường trung trực từ mỗi cạnh của tam giác.

thêm bình luận...
2
Gia Thiện20 đã đăng:

Theo đề bài, cho tam giác ABC có đường tròn ngoại tiếp tâm O, khi đó ta có các đường trung trực OD, OE và OF lần lượt vuông góc tại trung điểm của các cạnh AB, AC và BC như hình bên dưới:

Đường tròn ngoại tiếp tam giác ABC

Ta được các đường phân giác tương ứng OB, OA và OC.

Xét tam giác OAB, ta có:

$\Delta \text{ODA}$ = $\Delta \text{ODB}$ (Vì OD là đường trung trực tại cạnh AB và AD = DB)

$\Rightarrow \text{OA = OB} \hspace{1cm}$ (1)

Xét tam giác OAC, ta có:

$\Delta \text{OEA}$ = $\Delta \text{OEC}$ (Vì OE là đường trung trực tại cạnh AC và AE = EC)

$\Rightarrow \text{OA = OC} \hspace{1cm}$ (2)

Gọi $r$ là bán kính đường tròn ngoại tiếp tâm O, từ (1) và (2) suy ra: $r$ = OB = OA = OC (3)

Tiếp theo, ta phải chứng minh được khoảng cách từ tâm O đến các cạnh của tam giác ABC là nhỏ hơn bán kính $r$, vì bán kính đường tròn $r$ lớn hơn thì đường tròn mới nằm ngoài tam giác ABC được.

Xét một điểm thuộc một cạnh bất kỳ của tam giác ABC (bạn có thể chọn bất kỳ điểm nào nằm trên cạnh tam giác ABC, kết quả đều như nhau), ở đây mình chọn điểm M thuộc cạnh AD, khi đó ta có:

$\text{OA} = \sqrt{\text{AD}^2 + \text{DO}^2}$ = $\sqrt{\left(\text{AM}^2 + \text{MD}^2\right) + \text{DO}^2} \hspace{1cm}$ (4)

$\text{OM} = \sqrt{\text{MD}^2 + \text{DO}^2} \hspace{1cm}$ (5)

Từ (4) và (5), ta suy ra $\text{OM < OA} \hspace{1cm}$ (6)

Do đó có thể kết luận khoảng cách từ tâm O đến các cạnh của tam giác ABC nhỏ hơn bán kính $r$ của đường tròn.

Từ (3) và (6), ta có đường tròn tâm O là đường tròn ngoại tiếp của tam giác ABC (điều phải chứng minh).

đã bổ sung 3.3 năm trước bởi
Avatar: Tèo Em Tèo Em60
Nha Trang
thêm bình luận...
0
Cộng đồng đã đăng:

Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I ( I nằm giữa A và O ) Lấy điểm E trên cung nhỏ BC ( E khác B và C) AE cắt CD tại F. CM tâm đường tròn ngoại tiếp tam giác CEF thuộc CB Giảng giúp e với ạ

thêm bình luận...

Câu trả lời của bạn

Chào mừng bạn đến với cộng đồng chia sẻ tri thức BanhoiTuidap.com, bạn có thể chia sẻ bất kỳ sự hiểu biết, nghiên cứu hoặc kinh nghiệm của mình về câu hỏi này với một số lưu ý:
  • Lịch sự, tế nhị.
  • Hạn chế ghi tắt, câu trả lời của bạn chỉ nên tập trung vào câu hỏi ở trên.
Câu trả lời của bạn sẽ được đăng ở chế độ cộng đồng, cho nên bạn sẽ không thể chỉnh sửa sau khi đăng, có thể đăng ký thành viên trên BanhoiTuidap.com khi bạn muốn theo dõi câu hỏi này hoặc chủ đề liên quan.
Bạn đang thắc mắc? Ghi câu hỏi của bạn và đăng ở chế độ cộng đồng (?)